合作机构:阿里云 / 腾讯云 / 亚马逊云 / DreamHost / NameSilo / INWX / GODADDY / 百度统计
译者 | 布加迪
审校 | 重楼
微服务架构便于创建边界明确定义的灵活独立服务。这种可扩展的方法使开发人员能够在不影响整个应用程序的情况下单独维护和完善服务。然而,若要充分发挥微服务架构的潜力、特别是针对基于人工智能的聊天应用程序,需要与最新的大语言模型(LLM,比如Meta LLama V2和OpenAI的ChatGPT)以及基于各种应用程序用例发布的其他经过微调的LLM进行强大的集成,从而为多样化的解决方案提供多模型方法。
LLM是大规模模型,可以基于不同数据训练生成类似人类的文本。通过从互联网上数十亿的单词中学习,LLM了解上下文并生成不同领域的调整后内容。然而,由于需要独特的接口、访问端点和每个模型的特定载荷,将各种LLM集成到单个应用程序中常常带来挑战。因此,拥有可以处理各种模型的单一集成服务就能改进架构设计,并加大独立服务的规模。
本教程将介绍使用Node.js和Express在微服务架构中针对LLama V2和ChatGPT的IntelliNode集成。
以下是IntelliNode提供的几个聊天集成选项:
1. LLama V2:您可以通过Replicate的API集成LLama V2模型,以实现简单的流程,也可以通过AWS SageMaker主机集成LLama V2模型,以实现额外的控制。
LLama V2是一种功能强大的开源LLM,它已经过预训练,并使用多达700亿个参数进行了微调。它擅长处理众多领域的复杂推理任务,包括编程和创意写作等专业领域。它的训练方法包括自我监督数据,并通过从人类反馈中强化学习(RLHF)与人类偏好保持对齐。LLama V2超越了现有的开源模型,在易用性和安全性方面可与ChatGPT和BARD等闭源模型相媲美。
2. ChatGPT:通过简单地提供OpenAI API密钥,IntelliNode模块允许在简单的聊天界面中与模型集成。您可以通过GPT 3.5或GPT 4模型访问ChatGPT。这些模型已使用了大量数据进行训练,并经过微调,以提供与上下文高度相关的、准确的响应。
不妨从初始化一个新的Node.js项目开始。打开终端,浏览到项目所在目录,然后运行以下命令:
npm init -y
TOP