您当前位置:资讯中心 >服务器 >浏览文章

使用LLama和ChatGPT为多聊天后端构建微服务

来源:互联网 日期:2023/11/10 8:00:00 阅读量:(0)

译者 | 布加迪

审校 | 重楼

微服务架构便于创建边界明确定义灵活独立服务。这种可扩展的方法使开发人员能够在不影响整个应用程序的情况下单独维护和完善服务。然而,若要充分发挥微服务架构的潜力特别是针对基于人工智能聊天应用程序,需要与最新的大语言模型(LLM,比如Meta LLama V2OpenAIChatGPT以及基于各种应用程序用例发布其他经过微调的LLM进行强大的集成,从而为多样化的解决方案提供多模型方法。

LLM是大规模模型,可以基于不同数据训练生成类似人类的文本。通过从互联网上数十亿单词中学习,LLM了解上下文并生成不同领域调整内容。然而,由于需要独特的接口、访问端点和每个模型的特定载荷,将各种LLM集成到单个应用程序中常常带来挑战。因此,拥有可以处理各种模型的单一集成服务就能改进架构设计,加大独立服务的规模。

本教程介绍使用Node.jsExpress在微服务架构中针对LLama V2ChatGPTIntelliNode集成

聊天机器人集成选项

以下是IntelliNode提供的几个聊天集成选项

1. LLama V2您可以通过ReplicateAPI集成LLama V2模型,以实现简单的流程,也可以通AWS SageMaker主机集成LLama V2模型,以实现额外的控制。

LLama V2是一功能强大的开源LLM,它已经过预训练,并使用多700亿个参数进行了微调。它擅长处理众多领域的复杂推理任务,包括编程和创意写作等专业领域。它的训练方法包括自我监督数据,并通过人类反馈中强化学习RLHF与人类偏好保持对齐。LLama V2超越了现有的开源模型,在用性和安全性方面可与ChatGPTBARD等闭源模型相媲美。

2. ChatGPT通过简单地提供OpenAI API密钥,IntelliNode模块允许在简单的聊天界面中与模型集成。您可以通过GPT 3.5GPT 4模型访问ChatGPT。这些模型已使用了大量数据进行训练,并经过微调,以提供与上下文高度相关的、准确的响应。

逐步集成

不妨从初始化一个新的Node.js项目开始。打开终端,浏览到项目所在目录,然后运行以下命令

npm init -y
关键字:
声明:我公司网站部分信息和资讯来自于网络,若涉及版权相关问题请致电(63937922)或在线提交留言告知,我们会第一时间屏蔽删除。
有价值
0% (0)
无价值
0% (10)

分享转发:

发表评论请先登录后发表评论。愿您的每句评论,都能给大家的生活添色彩,带来共鸣,带来思索,带来快乐。