合作机构:阿里云 / 腾讯云 / 亚马逊云 / DreamHost / NameSilo / INWX / GODADDY / 百度统计
Matplotlib 有助于创建二维数组图,它允许用户通过散点图、折线图、条形图和直方图等来探索趋势、行为模式和相关性。
https://github.com/matplotlib/matplotlib
图片
Matplotlib 的主要特点
Seaborn 也是 Python 中流行的可视化库之一。它对于用 Python 进行数据集的统计表示特别有用。Seaborn 基于 Matplotlib 构建,受益于其灵活性以及与 NumPy 和 Pandas 库的集成,理解和编写起来非常容易和快速。
https://github.com/mwaskom/seaborn
图片
Seaborn的主要特点
Plotly 被许多用户誉为最好的 Python 可视化库,是一个交互式、开源且全面的工具,用于在 Python 中创建声明性可视化。它提供了丰富的可视化效果,包括科学图表、3D 图表、统计图表和金融图表。Plotly 图表非常适合 Jupyter 笔记本和独立 HTML 文件,可以在线无缝查看。
Plotly 的主要特点
Bokeh 是交互式 Python 可视化包之一。它为复杂的用例提供高性能的交互式绘图和图表。可以使用自定义 JavaScript 轻松修改图表。由于其易于兼容的特性,它可以与 Pandas 和 Jupyter Notebook 一起使用。
https://github.com/bokeh/bokeh
图片
Bokeh 的主要特点
Plotnine 是基于 ggplot2 的图形语法的实现。该包支持根据数据框中的数据创建复杂的绘图。默认设置有助于创建出版物质量的绘图,而无需进行大量设置和调整。
Plotnine 的主要优点之一是其简单性和易用性。它的语法直观且富有表现力,因此用户只需几行代码即可创建复杂的绘图。
https://github.com/has2k1/plotnine
Plotnine 的主要特点
Altair 是一个简单、友好且一致的 Python 声明性可视化库,构建于 Vega-Lite 语法之上。声明性方法与 Seaborn 中的相同,使用户可以自由地专注于解释数据,而不是编写正确的语法。然而,这种方法也有一个缺点:用户对自定义可视化的控制较少。
Altair 是 Python 可视化软件包之一,它提供非常令人愉快且引人注目的数据可视化,但与 Seaborn 相比,需要更多的精力来理解和编写。
https://github.com/altair-viz/altair
图片
Altair 的主要特点
Holoviews 是一个 Python 库,用于使用高级声明性语法创建交互式可视化。它通过提供简洁而富有表现力的方式来创建复杂的绘图,从而简化了数据可视化的过程。Holoviews的主要原则是数据可视化应该尽可能直接和简单。
https://github.com/holoviz/holoviews
图片
Holoviews的主要特点
TOP