合作机构:阿里云 / 腾讯云 / 亚马逊云 / DreamHost / NameSilo / INWX / GODADDY / 百度统计
随着企业数据规模的增长,数据的价值变得越来越重要。然而,传统的数据库在承载大量数据时面临挑战,需要高效有序的维护。因此,建立高效的数据仓库成为了企业决策和管理的基石,但现代技术的背景下,数据管理和保护仍然存在着重要挑战。
为了解决这些挑战,数据分层成为了数仓建设中不可或缺的步骤之一。通过对数据的分层整理,不同的数据可以被合理地分类,方便企业快速进行数据分析和决策。
在实际应用中,数据分层需要进行灵活而有效的规划和设计,并结合相关的技术和工具进行管理和监控。只有这样,企业才能提高决策和管理的效率,增强市场竞争力。
数据分层是一种管理海量数据的方法。因为数据通常会包括许多不同的来源,而这些来源往往也会以不同的方式存储和处理数据。这就是为什么需要使用数据分层。通过将数据分级存储、加工和管理,可以更好地维护数据一致性、数据安全和数据复用。
数据分层前后对比
如果把数据看作图书馆里的书,我们希望看到它们在书架上分门别类地放置;如果把数据看作城市的建筑,我们希望城市规划布局合理;如果把数据看作电脑文件和文件夹,我们希望按照自己的习惯有很好的文件夹组织方式,而不是糟糕混乱的桌面,经常为找一个文件而不知所措。
简单来说,数据分层是将现实世界中收集到的有效信息,按照其特点和用途进行分类和组织,从而更加合理地表现数据的价值。数据分层解决了数据管理中的各种挑战和问题,并满足了以下几个方面的需求:
数值型数据(如销售额、成本等)
文本型数据(如文件、文档等)
图像型数据
视频型数据
音频型数据
结构化数据(如关系型数据库中的表格数据)
半结构化数据(如JSON、XML等非严格格式化数据)
非结构化数据(如文本、日志等无固定格式的数据)
个人身份数据(如个人身份证号码、手机号码等)
机密数据(如公司财务数据、合同等)
敏感数据(如用户的健康状况、信用卡信息等)
处理过程中生成的临时数据
派生数据(如计算指标和数据挖掘结果)
集成数据(如数据仓库中的整合数据)
历史数据(如过去几年的销售订单数据)
备份数据(如系统的数据库备份)
归档数据(如长期存储的审计日志)
了解了数据分层的一些优势,大家可能就有疑问了。我们如何进行数据分层呢?大概需要分几层呢?
其实这个问题需要根据实际的业务状况以及需要处理的数据体量来进行划分,介绍分层之前,咱们先来了解下会有哪些分层,每层的作用和目的是啥。
图片
下面以一个互联网在线学习平台为例:
如果想要从学生、教师和课程等不同维度进行深入的数据分析和挖掘,则单一的数据源无法满足这一需求,必须进行数据分层,将数据按照不同的层次进行清洗和整合,并与不同维度的数据进行连接和关联。如果不进行数据分层的处理,数据的管理和维护将变得非常困难,同时也会导致数据的准确性和可靠性受到影响。
此外,如果各个业务之间的数据交互和处理没有进行优化和规划,数据处理在不同业务之间的流转和传递就会变得十分复杂,这对平台的运营效率和效果产生不良影响。同时无法为用户提供更好的个性化服务,因为个性化服务需要对用户的属性、偏好和需求进行深入的了解和分析。
因此,数据分层处理对于在线学习平台的优化是十分必要的:
图片
从这个案例可以分析出,通过数据分层设计带来如下价值:
由上述案例可见,数据仓库的分层设计具有诸多价值,能够提升数据管理效率、简化复杂问题处理、提高数据复用能力,并为平台提供规范化的数据管理和分析支持:
为了帮助公司了解员工对公司目标、文化、薪酬福利、职业发展、工作环境等方面的满意度和需求,有助于识别问题、改善环境、增加团队凝聚力,从而提高员工的工作效率和工作满意度。得物每年会进行两次全司的员工满意度调研,从中挖掘出有价值的指标,以便更好地了解员工需求并制定相应的改进计划。
员工满意度数据分析中,存在以下痛点需注意:
为了解决上述痛点和需求,我们决定设计数据分层。通过将数据划分为不同层次,将数据处理、分析和服务化的流程分解成多个独立部分,从而最大限度地提高数据分析处理的效率和安全性。
数据分层不仅实现了数据的可视化维护和服务化,还为数据加工、应用和管理提供了更加清晰和规范化的指导方针,从而助力业务的发展和优化。
ODS层的设计目标是捕获和保存原始数据,以便后续的数据清洗、整合和转换。在这一层,数据通常以源系统的格式保存,保留了数据的完整性和粒度,并提供了适当的数据结构和字段以支持后续的转换处理。
图片
DWD层的设计目标是提供清洗、结构化和可查询的明细数据,以满足企业不同业务需求和分析要求。在DWD层,数据已经经过了一系列的清洗和转换过程,包括校验、敏感数据加密、去重、标准化、格式化和结构调整等,以确保数据的准确性、完整性和一致性。
图片
DWD层的数据分散且过于细节化,难以支持更高层次的分析和决策。此时就需要使用DWS层对DWD层的数据进行汇总和聚合,以得到更高层次的数据信息。从而提供大量的元数据、预先计算的指标和快速数据查询等功能。
DWS层的数据通常具有更高的抽象层次,可以根据不同的业务需要进行不同的聚合方式,比如按照性别、年龄、司龄等粒度提供满意度指标1,满意度指标2等汇总指标。
图片
DIM层可以看作是用来对数据进行分类、分组和筛选的“标签”。它通常是一些描述性的属性或特征,对数据进行了翻译和转换。
例如,对于系统满意度事实表,可以将维度层分为系统安全、系统性能、系统体验、系统稳定性等属性信息,这些属性可以对满意度调研数据进行分类、分组和筛选,帮助系统负责人更好地优化产品和服务。
图片
ADS是数据仓库中最接近用户和应用系统的一层,也是企业数据分析和应用的重要来源和基础。它的主要作用是将数据仓库中的数据用于企业的业务运营、决策分析、客户服务等方面,为用户和应用系统提供便利的数据访问和操作接口。
在设计和实施数据应用层ADS时,需要考虑以下因素:
图片
在这个案例中,我们遇到了许多困难,如数据权限限制、业务逻辑复杂、统计维度多样、业务变更频繁等,这些困难给数据的处理和分析带来了很大的难度和不便。
由于数据的分析是一个复杂的过程,可以采用数据分层的方法来解决这些问题。数据分层将数据处理、分析和服务化的流程分解成多个独立部分,从而最大限度地提高数据分析处理的效率和安全性。通过将数据划分为不同层次,数据分层实现了数据的可视化维护和服务化,为数据加工、应用和管理提供了更加清晰和规范化的指导方针,从而助力业务的发展和优化。
数据分层带来的一些问题
虽然数据分层设计带来了许多优点和价值,但也存在一些缺点。其中,主要包括以下几点:
因此,在实际数据仓库建设中,合理利用数据分层来组织、管理和分析数据是非常重要的。数据分层需要根据实际情况和企业需求来调整。
数据分层在数仓建设中扮演了一个不可或缺的角色。通过按照一定的规则和标准,重新组织和归纳数据,数据分层可以提高数据利用率,加强数据管理,进一步帮助企业开展科学化、精细化的运营管理和决策分析。
随着数据分析技术的进一步发展,数据分层也必将不断优化和完善。从数据分析工具的不断升级,到人工智能和机器学习技术的应用,数据分层必将成为企业数据管理和决策分析的头号利器。因此,作为企业管理者和数据分析师,必须时刻关注数据分层技术的发展趋势和变化,及时调整和优化自己的数据分层管理方案,保证企业数据管理和决策分析的高效性和准确性。
TOP