合作机构:阿里云 / 腾讯云 / 亚马逊云 / DreamHost / NameSilo / INWX / GODADDY / 百度统计
本文经自动驾驶之心公众号授权转载,转载请联系出处。
轨迹预测在自动驾驶中承担着重要的角色,自动驾驶轨迹预测是指通过分析车辆行驶过程中的各种数据,预测车辆未来的行驶轨迹。作为自动驾驶的核心模块,轨迹预测的质量对于下游的规划控制至关重要。轨迹预测任务技术栈丰富,需要熟悉自动驾驶动/静态感知、高精地图、车道线、神经网络架构(CNN&GNN&Transformer)技能等,入门难度很大!很多粉丝期望能够尽快上手轨迹预测,少踩坑,今天就为大家盘点下轨迹预测常见的一些问题和入门学习方法!
A:先看survey,problem formulation, deep learning-based methods里的sequential network,graph neural network和Evaluation。
A:是耦合的,但不一样。行为一般指目标车未来会采取什么动作,变道停车超车加速左右转直行等等。轨迹的话就是具体的具有时间信息的未来可能的位置点
A:我猜这里想说的是右边表格里的OBJECT_TYPE那一列。AV代表自动驾驶车自己,然后数据集往往会给每个场景指定一个或多个待预测的障碍物,一般会叫这些待预测的目标为target或者focal agent。某些数据集还会给出每个障碍物的语义标签,比如是车辆、行人还是自行车等。
Q2:车辆和行人的数据形式是一样的吗?我的意思是说,比如一个点云点代表行人,几十个点代表车辆?
A:这种轨迹数据集里面其实给的都是物体中心点的xyz坐标,行人和车辆都是
Q3:argo1和argo2的数据集都是只指定了一个被预测的障碍物吧?那在做multi-agent prediction的时候 这两个数据集是怎么用的
A:argo1是只指定了一个,argo2其实指定了多个,最多可能有二十来个的样子。但是只指定一个并不妨碍你自己的模型预测多个障碍物。
A:”预测“自车轨迹当成自车规划轨迹,可以参考uniad
A:nn网络基本不需要哈,rule based的需要懂一些
A:先看综述,把思维导图整理出来,例如《Machine Learning for Autonomous Vehicle's Trajectory Prediction: A comprehensive survey, Challenges, and Future Research Directions》这篇综述去看看英文原文
A1(stu): 默认预测属于感知吧,或者决策中隐含预测,反正没有预测不行。
A2(stu): 决策该规控做,有行为规划,高级一点的就是做交互和博弈,有的公司会有单独的交互博弈组
TOP