-
一、引言随着企业数据规模的增长,数据的价值变得越来越重要。然而,传统的数据库在承载大量数据时面临挑战,需要高效有序的维护。因此,建立高效的数据仓库成为了企业决策和管理的基石,但现代技术的背景下,数据管理和保护仍然存在着重要挑战。为了解决这些挑战,数据分层成为了数仓
-
前言当涉及到企业分析场景时,所使用的数据通常源自多样的业务数据,这些数据系统大多采用以行为主的存储结构,比如支付交易记录、用户购买行为、传感器报警等。在数仓及分析领域,海量数据则主要采按列的方式储存。因此,将数据从行级转换成列级存储是建立企业数仓的基础能力。传统方
-
最近在做项目过程中发现一个问题:有些同事经常把指标数据标准中的业务属性、技术属性、管理属性当做业务元数据、技术元数据、管理元数据或者在数据指标标准定义的时候直接分为业务元数据、技术元数据和管理元数据。这就导致无论是信息管理的技术部门还是经营管理的业务部门总是一头雾
-
一提到数据指标体系,很多人喜欢背诵AARRR、RFM一类。可真到工作中,会经常发现很难满足业务需要。比如前几天就有同学在星球提问:用户流失该如何搭建指标体系?起因是:某公司定义了用户流失率指标是“连续三个月不消费”,可业务看到这个指标却很懵:1、知道了用户流失率是
-
标签作为企业数字化营销的基石,在企业运营与营销场景下发挥着重要的作用,通过标签体系,企业可以更好地了解消费者的需求和行为,丰富用户画像特征,帮助企业优化产品设计和营销策略,提高产品的市场竞争力。因此,企业需要从业务场景出发,构建适用于自身业务模式和逻辑的标签体系,
-
一、总体架构面对日益增长的数据量,Lambda 架构使用离线/实时两条链路和两种存储完成数据的保存和处理。这种繁杂的架构体系带来了不一致的问题,需要通过修数、补数等一系列监控运维手段去弥补。为了统一简化架构,提高开发效率,减少运维负担,我们实施了基于数据湖 Hud